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Modulated phases of a one-dimensional sharp interface model in a magnetic field
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We investigate the ground states of one-dimensional continuum models having short-range ferromagnetic-
type interactions and a wide class of competing longer-range antiferromagnetic-type interactions. The model is
defined in terms of an energy functional, which can be thought of as the Hamiltonian of a coarse-grained
microscopic system or as a mesoscopic free-energy functional describing various materials. We prove that the
ground state is simple periodic whatever the prescribed total magnetization might be. Previous studies of this
model of frustrated systems assumed this simple periodicity but, as in many examples in condensed-matter
physics, it is neither obvious nor always true that ground states do not have a more complicated, or even

chaotic structure.
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I. INTRODUCTION

In two previous papers'? we considered one-dimensional

(ID) discrete and continuum models of classical spin sys-
tems with short- and long-range competing interactions. We
proved that, if the long-range interactions are reflection posi-
tive and the short-range interaction is ultralocal [nearest
neighbor (nn) in the lattice case] then the ground states of the
system display periodic striped order. The proof was based
on antiferromagnetic reflections about the nodes of the
spin-density configuration, and used the fact that no external
magnetic field was imposed or, equivalently, that the total
magnetization was zero. In this note, we extend the analysis
of Refs. 1 and 2 to a continuum sharp interface model in
the case of nonzero magnetization. We find that for a large
class of antiferromagnetic long-range interactions with arbi-
trarily fixed total magnetization, all the ground states are
simple periodic, i.e., they consist of a sequence of blocks of
alternate sign of the spin and alternate lengths
vy, €0,€1,45,..., so that the magnetization per unit
length, which is specified, is m=(€;—4€,)/ (£, +€,). Recently,
Nielsen et al.® studied the dependence of the period €+,
on the surface tension in such a 1D sharp interface model
with power-law interactions, under the assumption (sup-
ported by numerical evidence) that all the ground states of
the system are simple periodic. One of our goals here is to
prove that their restriction to simple periodicity is justified.
If we give up the continuum nature of the model then, in
general, the simple periodic states are not expected to be the
ground states of the system. Indeed, for a discrete Ising
model with only long-ranged antiferromagnetic convex inter-
actions, the ground states display a complex structure as a
function of the prescribed magnetization. See Refs. 4-6 If, in
this discrete model, a short-range ferromagnetic interaction
of strength J is added to the long-range antiferromagnetic
one, it is reasonable to expect that the ground states still
display a similar (periodic or quasiperiodic) complex struc-
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ture. As J becomes large, the typical scale € of modulation
increases (in particular, for J sufficiently large, € is much
larger than the lattice spacing), and the ground states of the
discrete model are close to those of a continuum model with
sharp interfaces, modulo small displacements of the loca-
tions of the domain walls. It is a priori unclear whether the
ground states of the continuum model should display the
same complex structures expected in the discrete case or not.

Simple periodicity cannot, therefore, be taken for granted,
and since the numerical tests commonly investigate only the
local stability of not-too-complex periodic structures, it is
desirable to have a rigorous proof of simple periodicity. In
this paper we provide such a proof for reflection positive
potentials (including the power-law potentials considered in
Ref. 3) and for perturbations of reflection positive potentials.
Indeed the number of physical models for which periodicity
can be rigorously proved is very small,”® and our methods
here might lead to other useful examples. This is of particu-
lar interest in 2D, where mesoscopic free-energy functionals
of the type we consider here have been proposed as models
for micromagnets,'*!? diblock copolymers,'>-!3 anisotropic
electron gases,'®!” polyelectrolytes,'® charge-density waves
in layered transition metals'® and superconducting films.?° In
all these systems, existence of simple periodic ground states
has been argued heuristically,!%1>-1416.17.20-23 byt there are at
present only few rigorous results.'?*-27 Note, however, that
our results on the structure of the one-dimensional ground
states also apply to higher dimensional cases, if we restrict to
one-dimensional configurations, i.e., to configurations that
are translational invariant in d—1 coordinate directions. In
other words, the results of this paper imply that in a con-
tinuum model with sharp interfaces and long-range reflection
positive interactions (or perturbations of reflection positive
interactions) in dimension d=1, the minimal energy state
among the one-dimensional configurations displays simple
periodicity.

©2009 The American Physical Society
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FIG. 1. A function defined in the interval [a,b] (upper part) and
its Neumann extension (lower part).

The paper is organized as follows. In Sec. II we define the
model, state the main results in the form of two theorems,
and discuss their significance. In Sec. III we prove the first
theorem, for the case of reflection positive interactions. The
proof combines ideas from our previous papers and from
Refs. 7-9. In Sec. IV we prove stability of our results,
namely, that small perturbations of reflection positive inter-
actions do not affect the simple periodicity of the ground
state; moreover, we discuss the ground-state properties of the
system at small J. In Sec. VI we summarize our results and
discuss conclusions and perspectives. In appendix we prove
some nondegeneracy properties of the minimizers, used in
the proof of Theorem 1.

II. MAIN RESULTS

Given L >0, we consider the following energy functional:

J L 1 L +o0
E(u) = EJ dx|u'| + Ef dxf dyu(x)v(x—y)u(y),
0 0 o

(2.1)

where J>0, v is a positive potential, and u is a function
defined for 0 =x=L that assumes the values *1, represent-
ing the configurations of our 1D magnetic system, and u' is
its derivative. For any function u with values * 1, [{dx|u’'| is
simply twice the number of times u(x) jumps from +1 to —1
or from —1 to +1.

The function i, in Eq. (2.1), is the (Neumann) extension
of u over the whole real axis and is defined as follows. Given
a function w defined in an interval /=[a,b], its Neumann
extension w is obtained from w by iteratively reflecting it
about the end points a and b of I and about their images, see
Fig. 1.

We will also assume that u satisfies the magnetization

constraint
1 (L
— | dxu(x)=m,
3 j (x)

0

0=m<1. (2.2)

In the following, we shall require that the potential v satisfies
some positivity properties. More precisely, we shall consider
(1) Reflection positive potentials, i.e.,

v(x) = J i dau(a)e™ ™, (2.3)
0

with w a positive density such that v is integrable, i.e.,
Jodau(a@)a™ <o; Eq. (2.3) is equivalent to the condition
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that v is completely monotone, i.e., (—1)"%}220, for all
x>0, n=0:%

(2) Finite-range perturbations of reflection positive poten-
tials, i.e.,

v(x) =vo(x) + fo (%),

with v, as in Eq. (2.3) and f, a finite, even potential, with
range &.

Our first result is that in the case of reflection positive
interactions the minimizers of Eq. (2.1) are simple periodic,
for all />0.

Theorem 1 [Simple periodicity]. Given an integer M and
0=m<1, let uy,,(x) be defined for 0O=x=L/M by

(2.4)

. 1+mL
+1 if O0=x= —,
2 M
uM,m(x) = 1+ m L L (25)
-1 if —=x=—.
2 M M

Then all the finite volume minimizers of Eq. (2.1), with re-
flection positive potential Eq. (2.3), are of the form wj,(x)
=iy (x) OF Wy (x)=ily,,(x— %), with M fixed by the varia-
tional equation

E(wyy) =min Ewy,,),
M/

(2.6)

where M’ is a positive integer.

The variational Eq. (2.6) has been studied and solved, for
some explicit choices of v, in Ref. 3. One might worry about
the fact that the resulting picture of a zero-temperature phase
diagram consisting of simple periodic ground states crucially
depends on the choice of a reflection positive, or at least
convex, potential. Any reflection positive potential is convex
and any convex potential that goes to zero at infinity has a
cusp at x=0. A natural question, therefore, is whether the
cusp plays an important role or not in the resulting phenom-
enon. It is reassuring that we can prove that the simple peri-
odicity property is stable under small perturbations f, of the
reflection positive potential that remove the cusp, as long as
€ is smaller than the resulting period.

Theorem 2 [Perturbative stability]. Let v, v, and f, be
defined as in Eq. (2.4) and let us assume that

e < / .
JZedx{vo(x) + 2|f5(x)]]

Then the finite volume minimizers of Eq. (2.1) with per-
turbed reflection positive potential (2.4) are functions of the
form w,;, with w;, defined as in Theorem 1, and with M
fixed by the variational equation

(2.7)

E(wyy) =min Ew},,). (2.8)

'
Theorem 2 can be interpreted as saying that for any finite J
the simple periodicity property is stable under small finite-
range perturbations of the potential. It can also be interpreted
the other way round: For any given finite-range perturbation
of a reflection positive potential, the ground state is simply
periodic if J is large enough. In this sense, it suffices that
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FIG. 2. A putative minimizer w of E,(u) in the subspace of
functions with M=9 jumps, and its sequence of nondegenerate
jump points.

beyond a certain range, which grows with J, the interaction
is reflection positive, in order for the ground state to be sim-
ply periodic. On the contrary, at small values of J, the struc-
ture of the ground states may depend critically on the short
range properties of the potential, as discussed in Sec. 1V,
after the proof of Theorem 2.

A similar stability result is valid for lattice models in zero
magnetic field with zero (or unconstrained) magnetization.
Consider a 1D Ising model with finite range ferromagnetic
interactions and long-range antiferromagnetic reflection posi-
tive interactions. If the strength J of the nn ferromagnetic
interaction is large enough, while the strength of further
neighbor ferromagnetic and long-range antiferromagnetic in-
teractions are kept fixed, the ground states are simple peri-
odic. This extends the results of Ref. 1, where simple peri-
odicity was proved only for the case of nn ferromagnetic
interactions. The proof of this claim goes along the same
lines as the proof of Theorem 2 and we will not belabor its
details here. On the contrary, our proof does not extend to the
lattice case if the prescribed magnetization is different from
zero. We do not think that this is just a technical problem: as
remarked in the introduction, the ground states of discrete
models with prescribed magnetization different from zero are
not expected to be simple periodic, see Refs. 4-6, so we
expect the analogs of Theorems 1 and 2 to be false in this
case.

II1. PROOF OF THEOREM 1

Let us first fix an integer M and let us temporarily restrict
ourselves to functions with exactly M jumps in [0,L]. Let us
rewrite the energy of such functions in the form

[

E(u)=JM + %f dau(@)E (1), E(u)
0
L
=f dxu(x) W, (x), (3.1)
0
where
Wou(x) = f dye=*li(y) (3.2)

is the potential at point x associated to the exponential inter-
action ¢~**I. A short calculation shows that W, satisfies
the linear second-order equation

W, ,(x) - W, (x) = = 2au(x). (3.3)

For a given M and m exactly one simple periodic function
exists (up to translations). We are going to prove that for
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FIG. 3. A putative minimizer w with M =9 jumps (upper part). If
X, and x5 are zero derivative points of w, then the potential gener-
ated by w and by w5 (lower part) inside the interval [x,,x3] are the
same.

each >0, E (u) is minimized by this simple periodic func-
tion and, therefore, £(u) is also minimized by this function.

Let us now fix « and let w be a minimizer of E,(u) in the
space of functions with exactly M jumps. We can assume,
without loss of generality, that w(0)=+1. In this case, w is
uniquely determined by the sequence of its jump points O
=71=75 ==z =L, see Fig. 2; these jump points have to
satisfy a constraint induced by Eq. (2.2)

2= (z—z)+ -+ (= 1)M_1(ZM_ZM—1) + (= DM(L-2zy)
(3.4)

The existence of a minimizer for fixed « and fixed num-
ber of jumps is proved in appendix, where it is shown in
particular that any such minimizer has a nondegenerate se-
quence of jump points, i.e., 0<z; <z, <--- <z <L, and
that the potential at the jump points is constant, i.e., W, (z,)
is independent of i. As discussed in appendix, the potential
W, 18 strictly convex in the intervals where w is negative
and concave in the intervals where w is positive. Therefore,
W, has exactly one zero derivative point in each interval
(z;,2i41), i=1,...,M~—1; let us denote it by x;, x; € (z;,2;11)-
We also define xy=0 and x,,=L; note that, by the Neumann’s
boundary conditions imposed on the big box [0,L], we also
have that W, (xo)=W,_,(x))=0 (Fig. 3).

The ordered (and nondegenerate) sequence of points x;,
i=0,...,M, induces a partition of [0,L] in intervals I,
=[x;,x;41] characterized by the fact that W, (x;)=0. Now,
the first key remark, due to Miiller and to Chen and Oshita,”?
is that, for every x eI, W, (x)=W,, (x), where w;=,,
with Wi, the restriction of w to I;. In other words the claim is
that, if we restrict to intervals whose end points are zero
derivative of the potential, then the potential inside such an
interval is the same as one would get by repeatedly reflecting
W, about the end points of /; and about their images under
reflections. The reason is very simple: both W, (x) and
W, (%) satisfy the same Eq. (3.3) in the same interval, with
W’ =0 boundary conditions at x; and x;, ;. The solution of the
linear Eq. (3.3) with these boundary conditions is unique,
which means that the two potentials must be the same on /;.
Therefore,

=Lm.

Livl

L M—l
f dw(OW,, ()= 2 | dewx)W,, (). (3.5)
0 i=0

i

On the other hand, denoting by p;, g; the lengths of the posi-
tive and negative parts of w; on [I;, respectively, a computa-
tion shows that
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i1
o? f dxwi(x) Wy, (%)

i

sinh(ap;)sinh(ag;)

=2pa+2qa-4 = flap;,aq)).

sinh(ap; + aq;)
(3.6)
It is straightforward to check that f is a jointly strictly con-

vex function of the variables (p,q), that is, the second de-
rivative matrix (the Hessian) of f(x,y), which is

8
H((xy) = —————
D) [sinh(x + y)?
y ((sinh y)’cosh(x+y)  —sinh x-sinhy )
—sinhx-sinhy  (sinh x)’cosh(x +y) /)’

(3.7)

is positive definite for all x,y>0. The convexity implies that
the minimum energy occurs when all the p; and g; are the
same, given the constraint on their sums. Thus, the potential
energy at fixed @ of a minimizer ¢ in the subspace of func-
tions with M jumps satisfies

L M-1 5 s
a2f dxw(x)W,,,.(x) = E flap;,aq;) = Mf(aﬁ,a’—q'>
0 ’ i=0 M M
_M( Ll+m £1—m> (3.8)
MRy )

In the last equality we used the mass constraint (2.2). Note
that the inequality in Eq. (3.8) is strict unless the values of
(p;,q;) are independent of i. Now, the rhs of Eq. (3.8) is
nothing else but [§dx[gdywy,(x)e™ 5, (y), with w,, de-
fined as in Theorem 1. This shows that the only two mini-
mizers of E(u) on the subspace of functions with M jumps
are precisely the w,, defined in Theorem 1. Quite remark-
ably, these minimizers are independent of «: this is the sec-
ond key remark. Therefore, averaging over « and minimiz-
ing over M, we get Theorem 1. Q.E.D.

Let us conclude this section by a comment. The proof of
Theorem 1 raises the question of whether there might be
nonsimple periodic “metastable” states w in which the poten-
tial at the jump points, W, (z;)=[qdau(a)W,,,(z;), are all
equal. A computation along the same lines of the proof of
Theorem 1 allows one to prove that such metastable states do
not exist when v(x):Ce‘”‘O"CI but we do not know whether
these are possible for more general reflection positive (or just
convex) potentials.

IV. PROOF OF THEOREM 2

Let us fix />0 and let us consider a minimizer w of Eq.
(2.1). Let M* be its number of jumps and let hy=2z;, h,
=2=21» s My = 2= 21> Mppe=2(L—7)4%) be the corre-
sponding block sizes. An important remark is that, for any
fixed J>0, under the assumptions of Theorem 2, there is an
a priori lower bound on the block sizes in the ground state.
In fact, since w is an energy minimizer, energy must not
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decrease if we change sign of w in (z;,z;,), i.€., in the block
of size h;. If AE denotes the energy change corresponding to
such sign change, we have

Zi+] *
OSAES—2J+4J dxf dy[vo(x —y) + |fo(x=y)[].
i

Zitl
(4.1)
Since f, has range &, we see that the rhs of Eq. (4.1) is

bounded above by —2J+2h;* dx|vy(x)|+4e[ rdx|fs(x)
which implies

s

=2 £, ()
b S edxlvo(x)|
with #*>0, by the assumptions of Theorem 2. It then must
be true that 1_—2|MML =hn".
If, as assumed in Theorem 2, the range ¢ of the perturba-
tion f, is strictly smaller than 4*, then the contribution to the

ground-state energy coming from f, is essentially trivial and
is given by

= h*, (4.2)

L
> f dx f dyw()f(x =) ()
0 R

& 0
= Lf dxf(x) - ZMI dyf dxf.(y —x). (4.3)
R 0 -

Therefore, defining JO:% sdy[° dxf,(y—x), we can write,

0

Ew) =Lf fe+(U=JoM + %J dap(a)w(x)W,,(x).

0
(4.4)

Proceeding as in Sec. III, and using the fact that I;Z‘MML
=h*>¢g, we find that the rhs of Eq. (4.4) is bounded from
below by E(W;*), as desired. As in the proof in Sec. III, the
bound below is strict, unless wzwfﬁ. This concludes the
proof of Theorem 2. Q.ED.

V. THE ZERO TEMPERATURE PHASE DIAGRAM
WITH PERTURBED REFLECTION POSITIVE
INTERACTIONS

Fix a perturbation f,. By Theorem 2, we know that for
large enough J, the ground states are simply periodic. It is
natural to ask what happens for smaller values of J. We claim
that in this case the nature of the ground state critically de-
pends on the short range properties of the potential and, more
precisely, it depends on whether v is of positive type [i.e., its
Fourier transform §(k) =0] or not. Before we enter a discus-
sion of this claim, let us remark that even if f, is arbitrarily
small, with an arbitrarily small range, the resulting potential
v=v(+f, can be of either type, depending on the specific
properties of f,. For example, let vy(x)=e™M, g, a positive
compactly supported even function of range & and A~
=[7 dx cosh xg.(x), then the potential w, given by the con-
volution of Ay, and g,, w=Avy*g,, is continuous, equal to
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eM for |x|> ¢ and equal to eM+0(&?) if |x| =&. Moreover,
its Fourier transform has the same sign as that of ¢,, which
might or might not be positive. For example, the triangle
function g, (x)=max{0,e—|x|} has .,=0, while the square
function g.(x)=60(s—|x|) is not of positive type.

Let us now explain why we expect that the nature of the
ground state at small J depends critically on the positivity of
0. To gain some intuition about the problem we first look at
the case J=0 and temporarily replace the constraint |u(x)|
=1 by the softer one |u(x)| =< 1. In this case, if v is of positive
type, then the potential term [Gdx[*rdyu(x)v(x—y)a(y) is
happiest when u is constant, i.e., u=m. When min 3(k)
=0(k") <0 then the potential energy wants u to be modulated
at the wavelength k*, e.g., u=m+(const.)cos(k*x).?2> [We
warn the reader that this k" has nothing to do with the spon-
taneous modulation wavelength resulting from the competi-
tion between surface tension and potential energy in models
with long-range interactions and a soft constraint on |u| given
by a double-well potential, e.g., in models of the form
O/ N S|’ P+Nf(?=1)*+ [u-(v*u), with X\ small. Our re-
sults and in particular the present discussion do not apply to
this latter case, see the concluding remarks section for more
comments about this point.]

We return to the case of a hard constraint |u(x)|=1: if J
=0, the functional £(u) is not minimized by any specific
function u. Instead, one can find a sequence of highly oscil-
lating functions u; that take only the values =1, approximat-
ing better and better as i — o0 the smooth functions u=m or
u=m+ (const.)cos(k*x), which make the energy &£(u;) closer
and closer to its infimum, in the two cases where v is of
positive type or not, respectively. In the presence of a small
positive J, the functional £(x) admits nontrivial minimizers:
they will be close to one of these highly oscillating configu-
rations, with a finite (but possibly very small) oscillation
scale. Therefore, if |u|=1 and v is not of positive type, the
minimizer at small J will be close to a highly oscillating
approximation of the modulated minimizer m
+(const.)cos(k*x), and so it will not be simply periodic. If
lu|=1 and v is of positive type, the minimizer at small J will
be close to a highly oscillating approximation of the constant
configuration u =m, and it may very well be that the optimal
u is simply periodic. We actually conjecture that this is the
case.

To summarize: in the presence of a fixed finite range per-
turbation of a reflection positive interaction, we expect the
zero-temperature phase diagram of the system to present
qualitative differences depending on whether the resulting
long-range interaction is of positive type or not. If v is of
positive type, we expect that the ground state is simple peri-
odic, for any J>0; if v is not of positive type, we expect the
ground state to have transition from a nonsimple periodic
state (with period essentially independent of J) to a simple
periodic state.

VI. CONCLUSIONS

We investigated a one-dimensional continuum sharp inter-
face model with long-range antiferromagnetic interactions,
under the constraint that the total magnetization is pre-
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scribed, and in general different from zero. If the long-range
interaction v is reflection positive, we proved that the ground
states are simple periodic, i.e., they consist of a sequence of
blocks of alternate sign of the spin and alternate lengths
vy, 45,4 ,€5,...; we also proved that simple periodicity is
stable under small finite range perturbations of the reflection
positive interaction. These results generalize previous
results’? concerning simple periodicity of the 1D ground
states on the lattice or on the continuum with zero total mag-
netization. Moreover, they provide a rigorous justification
that the ansatz chosen by Nielsen et al.’ to investigate the
dependence of the modulation length on the surface tension
and on the decay rate of the long-range interaction is correct.

Our results imply analogous statements for the case of
higher dimension d=1, but only if one restricts to 1D con-
figurations, i.e., to configurations that are translational in-
variant in d—1 dimensions. The conjecture that the ground
states of £(u) in two or more dimensions are simple periodic,
and possibly one-dimensional, is still open.

The fact that simple periodicity is stable under small finite
range perturbations, naturally leads us to ask whether simple
periodicity should also be expected at positive (possibly
small) temperatures. Unfortunately, we are still unable to
treat positive temperatures. At a mean field level, the effect
of the temperature can be mimicked by a soft interface
model, replacing Eq. (2.1), described by the functional®

3]2 L L
Fuw)==——] dxju'|*+ )\J dx(u*-1)?

L +00
+ %f dxj dyu(x)v(x —y)ul(y), (5.1)
0 o

under the constraint [ 6dxu(x)=mL. F(u) reduces to E(u) in
the limit A — %, which corresponds to “zero temperature;” on
the contrary, N small roughly corresponds to the case of high
temperature, in which case the scale of the modulation is
dictated by the competition between the kinetic energy and
the potential energy.'> While the ground states of Eq. (5.1)
with m=0 are simple periodic for any A>0,2 we are still
unable to prove the same at m# 0 for a generic reflection
positive interaction. Technically, the main difficulty in trying
to generalize the proof of Theorem 1 to this case is that if, as
in Sec. III, we rewrite the potential energy as a superposition
of the potentials W, ,(x) generated by the exponential inter-
actions exp{—a(x—y)}, and we try to minimize the functional

32 (* g 1
— dx|u’|2+)\J dx(u? - 1)* +
0

L
sy ), 20(0) fo u(x)Wy,(x),

(5.2)

for each value of « separately, we easily realize that, con-
trary to the sharp interface case, the minimizer of Eq. (5.2) in
the space of functions with a fixed number of jumps is not
independent of «, since the shape of the transition profile
from u=-1 to +1 depends in general on «. It would be
interesting to understand whether this is just a technical issue
or whether the difficulty arises from the fact that positive
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temperatures states are in general not simple periodic. We
hope to come back to this issue in a future publication.
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APPENDIX: NONDEGENERACY
OF THE MINIMIZERS

In this appendix we show that, for any a>0, the mini-
mizers w of E (u)=] (L)dxu(x) W,.(x) on the subspace of
functions with exactly M jumps are associated to a nonde-
generate sequence of jump points, zp=0<z; < - <z, <L
=2Zyy1; in other words, z;=z;,; does not occur. Moreover,
Wo(z:), i=1,...,M, is independent of i, as claimed in Sec.
II1, right after Eq. (3.4).

Given any u with exactly M jumps (not necessarily a
minimizer), let us identify it with its (possibly degenerate)
sequence of jumps. This space of ordered sequences is
clearly compact, so we have at least one minimizing se-
quence, which can, in principle, be degenerate; let us denote
itby 0=z =--- =z, =L. If this sequence is degenerate, let
0o<zi<-- <EM0<L, My<M, be the nondegenerate ordered
subsequence of (z;,...,z,). That is, we throw away the de-
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generate jumps at z;=z;,;. In this case, let us denote by ¢ the
nondegenerate function belonging to the subspace of func-
tions with M, jump points, associated to the sequence
Z1s---»Zy, Clearly, Jodxw(x)W,,,,(x)=[Gdx p(x) W, 4(x) and
¢ is a minimizer of E,, in the subspace of functions with M|,
jumps. With some abuse of notation, we shall denote the
energy of this nondegenerate configuration, as a function of
the position of its jump points, by E,(Z},...,Zy). By mini-
mality, ,E(Z,...,Z+&, Zi1+&,..2m) ls=o=0, which im-
plies that W, 4(z;) is independent of i, with i=1,... M.
Now, the potential Woo is concave in the intervals where
¢ is positive, and convex in the intervals where ¢ is nega-
tive, as we shall now prove. Assume that 7; <x<Z;,; is such
that ¢(x)=+1; in this case, rewriting ¢p(x) =—1+2x,(x), with
X4 the characteristic function of the region where & is posi-
tive, we have that W, 4(x)=-2a '+2f rdye~abl X4(x), from
which it is apparent that W, ,(x) is convex, being the super-
position of strictly convex functions. A similar proof applies
to the case where x is such that ¢(x)=—1. As a consequence,
there is exactly one strict internal maximum of the potential
in every interval where the minimizer is positive, and exactly
one strict internal minimum in every interval where the mini-
mizer is negative. Therefore, we can always decrease the
total potential energy by adding M-M, nondegenerate
jumps, sufficiently close to each other and sufficiently close
to, say, the left boundary of the big box [0,L]; this contra-
dicts the assumption that w is a minimizer in the subspace of
configurations with M jumps, and proves the claim.
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